Analyzing Glacier Surface Motion Using LiDAR Data

نویسندگان

  • Jennifer W. Telling
  • Craig L. Glennie
  • Andrew G. Fountain
  • David C. Finnegan
چکیده

Understanding glacier motion is key to understanding how glaciers are growing, shrinking, and responding to changing environmental conditions. In situ observations are often difficult to collect and offer an analysis of glacier surface motion only at a few discrete points. Using light detection and ranging (LiDAR) data collected from surveys over six glaciers in Greenland and Antarctica, particle image velocimetry (PIV) was applied to temporally-spaced point clouds to detect and measure surface motion. The type and distribution of surface features, surface roughness, and spatial and temporal resolution of the data were all found to be important factors, which limited the use of PIV to four of the original six glaciers. The PIV results were found to be in good agreement with other, widely accepted, measurement techniques, including manual tracking and GPS, and offered a comprehensive distribution of velocity data points across glacier surfaces. For three glaciers in Taylor Valley, Antarctica, average velocities ranged from 0.8–2.1 m/year. For one glacier in Greenland, the average velocity was 22.1 m/day (8067 m/year).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area

Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...

متن کامل

A geophone wireless sensor network for investigating glacier stick-slip motion

We have developed an innovative passive borehole geophone system, as part of a wireless environmental sensor network to investigate glacier stick-slip motion. The new geophone nodes use an ARM Cortex-M3 processor with a low power design capable of running on battery power while embedded in the ice. Only data from seismic events was stored, held temporarily on a micro-SD card until they were ret...

متن کامل

Presenting a Morphological Based Approach for Filtering The Point Cloud to Extract the Digital Terrain Model

The Digital terrain model is an important geospatial product used as the basis of many practical projects related to geospatial information. Nowadays, a dense point cloud can be generated using the LiDAR data. Actually, the acquired point cloud of the LiDAR, presents a digital surface model that contains ground and non-ground objects. The purpose of this paper is to present a new approach of ex...

متن کامل

Monitoring tropical debris-covered glacier dynamics from high-resolution unmanned aerial vehicle photogrammetry, Cordillera Blanca, Peru

The glaciers of the Cordillera Blanca, Peru, are rapidly retreating and thinning as a result of climate change, altering the timing, quantity and quality of water available to downstream users. Furthermore, increases in the number and size of proglacial lakes associated with these melting glaciers is increasing potential exposure to glacier lake outburst floods (GLOFs). Understanding how these ...

متن کامل

Development and application of a time-lapse photograph analysis method to investigate the link between tidewater glacier flow variations and supraglacial lake drainage events

Marine-terminating glaciers may experience seasonal and short-term flow variations, which can impact rates of ice flux through the glacier terminus. We explore the relationship between variability in the flow of a large tidewater glacier (Belcher Glacier, Nunavut, Canada), the seasonal cycle of surface meltwater production and the rapid drainage of supraglacial lakes. We demonstrate a novel met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017